•    Freeware
  •    Shareware
  •    Research
  •    Localization Tools 20
  •    Publications 707
  •    Validators 2
  •    Mobile Apps 22
  •    Fonts 31
  •    Guidelines/ Draft Standards 3
  •    Documents 13
  •    General Tools 38
  •    NLP Tools 105
  •    Linguistic Resources 255
The structure of a sentence can be seen as a spanning tree in a linguistically augmented graph of syntactic nodes. This paper presents an approach for unlabeled dependency parsing based on this view. The first step involves marking the chunks and the chunk heads of a given sentence and then identifying the intra-chunk dependency relations. The second step involves learning to identify the inter-chunk dependency relations. For this, we use an initialization technique based on a measure we call Normalized Conditional Mutual Information (NCMI), in addition to a few linguistic constraints. We present the results for Hindi. We have achieved a precision of 80.83% for sentences of size less than 10 words and 66.71% overall. This is significantly better than the baseline in which random initialization is used.
For Full Paper: : Click Here

Added on April 10, 2012


  More Details
  • Product Type : Research Paper
  • License Type : Freeware
  • System Requirement : Not Applicable
  • Author : Jagadeesh Gorla, Anil Kumar Singh, Rajeev Sangal, Karthik Gali,Samar Husain, V Sriram
Author Community Profile :
Similar / Suggested Resources